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The ACS algorithm, which is a par-
ticular instance of ant colony optimiza-
tion, has been applied successfully to a
variety of complex combinatorial opti-
mization problems (COPs). The aim of a
COP is to search and determine the most
suitable solution for optimizing (mini-
mizing or maximizing) an objective func-
tion (cost, accuracy, time, distance, etc.)
over a discrete set of feasible solutions.
Typical examples of practical COPs 
are the quadratic assignment, graph col-
oring, job-shop scheduling, sequential
ordering, and vehicle routing problems.
These problems arise in business, 
engineering, industry and many other
areas.

The designing of a GPS network as
a COP consists of establishing a set of
feasible schedules and then determining
which one is the best schedule and costs
the least. Exact methods can solve the
problem for small networks (5-15 sta-
tions). However, as the size of the net-
work increases, the number of calcula-
tions required to produce an exact solution
increases exponentially and, therefore,

With the recent growth in the use
of highly accurate geodetic sur-

veying techniques, primarily due to the
widespread adoption of GPS by the sur-
veying community, comes the desire for
a general framework for the optimal design
of GPS surveying networks. GPS allows
us to perform precise positioning at a frac-
tion of the cost required by traditional
methods. However, the time and cost of
achieving this precision on networks can
only be optimized if the logistics of the
GPS fieldwork are properly investigated.

In this article, we will examine how the
concept of the ant colony system (ACS)
metaheuristic algorithm has been suc-
cessfully applied to optimizing the logis-
tics of the GPS surveying network prob-
lem. A metaheuristic technique is an
iterative, self-learning procedure for quick-
ly and efficiently identifying a high qual-
ity solution for difficult optimization prob-
lems.  The ACS algorithm is inspired by
the foraging behavior of ants, who can
find short paths from their nest to food
sources by laying down pheromone traces
on the ground.
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an exact method  soon becomes imprac-
tical. Metaheuristic techniques, on the
other hand, can provide an optimal sched-
ule, or close to it, for networks of up
to thousands of stations with a reason-
able degree of computational effort. This
article proposes the ACS metaheuris-
tic technique  as a tool for finding the
best schedule in occupying a GPS sur-
veying network. 

The GPS Network Problem
Within the framework of the COPs, the
GPS surveying network problem can be
briefly defined as follows. A number of
receivers (identified as X, Y, Z, etc.)
are placed at stations (a, b, c, d, etc.)
to determine baselines between stations
in a sequence of observing sessions (ab,
ac, dc, etc.) as shown in Figure 1. This
process of session observation contin-
ues until the whole network is completely
observed. The challenge is to search 
for the best order in which these 
sessions can be organized to give the 
best schedule at minimum cost in elapsed
time between station occupations.
Mathematically, this is expressed as

where
� Sp : the route of receiver p in a

schedule;
� �C(Sp) : the total cost of carrying

out the survey of the whole network
using all the receivers; 

� C(V) : the total cost in time of a
feasible schedule V. 

� N : the set of stations N = {1,…,n}; 
� R : the set of receivers R = {1,...,r}; 
� U : the set of sessions U = {1,...,u}.

Metaheuristic Techniques
Interest in metaheuristic techniques
developed dramatically in the early 1980s
and they have had widespread success
in solving a variety of difficult practi-
cal COPs. Metaheuristics, which is based
on ideas from artificial intelligence, apply
to a wide range of important problems
in various disciplines, such as statistics,
engineering, mathematical program-
ming, and operational research. (The
word heuristic comes from the Greek
heuriskein, “to find or discover.” It is used
to describe problem solving techniques
that use self-learning.)

The fundamental concepts of any meta-
heuristic technique are: representation
and construction of an initial solution;
generation of neighbouring solutions;
acceptance strategy (that is, the criteria

A common problem in making measurements on a GPS surveying network with a
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ule) is obtained by following a four-step
procedure.

Starting the Algorithm. At each time step,
ants construct their schedules by itera-
tively adding new sessions to the current
partial schedule. The selection process
of the next session to be observed is based
on the heuristic information, �(i,j),and
pheromone level, �(i,j), on the path con-
necting these two sessions, as Figure 2
shows. Heuristic information, which
is based on the cost matrix, C, represents
the nearest sessions around the current
session, while the pheromone level “mem-
ory” of each path represents the usabil-
ity of this path in the past to find good
schedules.

Starting from the initial session i,
an explorer ant m chooses probabilis-
tically to observe session j next, using
the following transition rules: 

(1)

[[Where is “k” defined?]]
where I is a random variable selected
according to the distribution given by
Equation (2) which gives the probabil-
ity that an ant in session i chooses to
move to session j as follows:

(2)

where

and methods used to select acceptable
solutions); and stopping criteria (that is,
the criteria used to stop the search, such
as when there is no improvement in the
solution for several successive iterations,
or stopping the procedure after a pre-
defined number of iterations). Within
the frame of the combinatorial opti-
mization of GPS network scheduling,
metaheuristic techniques can be 
classified as schedule improvement tech-
niques and schedule construction 
techniques. Schedule improvement 
metaheuristic techniques start from a
given schedule and attempt to minimize
its cost through an iterative procedure
until it meets the stopping criteria for
the best possible solution. Schedule con-
struction metaheuristic techniques build
a feasible schedule from scratch and 
then attempt to minimize its cost by per-
turbing the schedule until it meets the
stopping criteria for the best possible
solution. For the work described in this
article, we adopted the ACS technique,
which is the most recent nature-inspired
metaheuristic technique, to construct an
initial schedule from scratch and then
improve it. 

Ants and Algorithms
The behavior of foraging ants provides
the basis for an algorithm that we describe
in this column, which we use to optimize
GPS network design. Using a probabilistic
trial-and-error method, an ant colony
develops a network of optimal routes
(shortest, fastest) to food sources. Foraging
ants mark their path by laying down
chemical cues called pheromones, vary-
ing the amount of chemical deposited
depending on the quantity of food and
its distance from the nest. Ants that dis-
cover the shortest route are able to move
back and forth between their nest and
the food source, depositing higher lev-
els of pheromone as they do so. Another
ant encountering a pheromone trail will
tend to follow it, thereby reinforcing it
with additional pheromone.

This behavior is a form of autocat-
alytic behavior: the more the ants follow
a trail, the more attractive that trail
becomes. This behavior of real ants has
inspired the technique of ant colony opti-
mization (ACO) developed by IRIDIA’s
Marco Dorigo, which has been success-
fully applied to many COPs.

The basic idea underlying the ACS
algorithm is the use of a positive feed-
back mechanism that searches for the
best possible solution for a hard opti-

mization problem.
Results obtained with
ant-based algorithms
are often as good as
those obtained with
other general-purpose
metaheuristics.

The ACS, which is a
particular instance of
the ACO, uses a colony
of virtual ants that
behave as co-operative
agents in a mathe-
matical space in which
they are allowed to
search and reinforce
pathways (solutions)
in order to find the opti-
mal ones. These path-
ways might contain
very complex information. Our artificial
ants have some memory and are not com-
pletely blind. Also, we consider time to
be discrete rather than continuous. In
the framework of the ACS algorithm,
when each ant completes a tour, the
pheromone along the ant’s path is rein-
forced according to the quality of the
solution the ant has found.

ACS Algorithm
To illustrate the procedure of the ACS
algorithm, we use a small GPS network,
as Figure 2 shows, with the following 
symbols:

� G = (U, S) is a network (or “graph”
in the context of graph theory )

� U = {1,..,u} is a set of nodes (GPS
sessions)

� S = {1,..,s} is a set of paths con-
necting nodes (geometric distance,
cost, time, or some other measures);

� dij = [(xi-xj)2+(yi-yj)2]1/2 is the
Euclidian (straight-line) distance
between nodes i and j (that is, path ij).
In the GPS network problem, this dis-
tance is represented by the time
required to move from one session to
another and the information is kept in
the form of a cost matrix C.

� M = (1,..,m) is a number of ants;
the search process starts with one ant
per node. 

Whereas real ants deposit pheromone
on the paths they visit, the algorithm’s
virtual ants, represented by search indices,
change numeric information (“virtual
pheromone”) stored in variables repre-
senting the sessions they observe. This
information can be changed by any
ant accessing or observing the session.
The shortest route (cheapest GPS sched-

FIGURE 1 Observation of sessions using GPS receivers.
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� �(i,j) is the intensity measure of the
amount of pheromone deposited on 
the path (i,j) by each ant. The higher the
level of pheromone on a given path,

� � is is a weighting parameter to con-
trol the intensity.

� Visibility �(i,j) = 1/Cij, is a heuristic
function given to an ant to make some
local decisions and possibly opt for the
nearest session at a given step in the
process (heuristic desirability). The vis-
ibility remains constant during the run
of the ACS program.

� � is a weighting parameter to con-
trol the degree of visibility.

� q is a uniformly distributed random
number q � [0, 1] and its purpose is to
determine the relative importance of
exploitation versus exploration.

� q0 is a threshold parameter and the
smaller q0 the higher the probability to
make a random choice.

� Sm(i) is the set of sessions that remain
to be observed by ant m positioned at
session i. 

As the preceding probability equations
show, the purpose of constants � and �
is to control the sensitivity of the search
to pheromone concentration and link
cost, respectively. This probability is 
based on the travel time to the nearest
sessions that the ant has not yet observed,
as well as on the amount of pheromone
present at that moment on the differ-
ent allowed paths. Therefore, the transi-
tion probability is a trade-off between 
the value of the visibility function (trav-
el time) and trail intensity (amount of
pheromone) at time t. Visibility means
that the nearer sessions should be 
selected with high probability (greedy
constructive heuristic), while the trail
intensity means that path (i,j) is highly
desirable if it has seen a lot of traffic (pos-
itive feedback).

In each step of building a schedule,
an ant located at session i samples the
parameter q to decided whether to move
to session j. Using Equation 1, an ant
selects the best path to observe the next
session when q < q0 (exploitation).
Otherwise, the ACS algorithm will 
probabilistically choose the next session
to be observed using Equation 2 with
a bias toward the best possible path
(biased exploration). The above equa-
tions show that the quality of the 
path (i,j) is proportional to its shortness
and to the  highest amount of pheromone
deposited on it (that is, the selection 
probability is proportional to path 
quality). 

Local Search Method. One must design 
a local search procedure that suits the
GPS network requirements and add it
to the main ACS algorithm. The main

the more likely that an explorer ant 
will take that path. The trail changes 
during each step of the run of the ACS
program.

FIGURE 2 Selection process of the GPS sessions using the ACS concept.
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purpose of implementation of the local
search method (LSM) is to speed up and
improve the solutions constructed by the
metaheuristics techniques.

The LSM (a move-by-move method)
perturbs a given solution to generate a
different neighbouring solution using
a move generation mechanism. This
mechanism, which is based on the
exchange of the solution’s components,
is a transition from one solution to 

(1,2), (1,3),…, (1,n), (2,3), (2,4), (u-1, u),
etc. The change in cost is computed and
the swap is accepted or rejected accord-
ing to the acceptance strategy of the
implemented optimization technique.
The basic steps for the LSM are as 
follows:

� Select a given schedule V � I(V) and
compute its cost value C(V). 

� Generate a schedule V´ � I(V) and
compute its cost value C(V´).

� If C(V´) < C(V) then replace V with
V´ as a current schedule.

� Otherwise, retain V and generate
other moves until C(V´) < C(V) for all V´�
I(V).

� Terminate the search and return
V as the local optimal schedule.

The Local Updating Rule. While ants build
their schedule, at the same time they
locally update the pheromone level of
the visited paths by applying the local
updating rule (LUR) as follows: 

(3)

where
� � is a persistence of the trail and the

term (1-�) can be interpreted as trail evap-
oration;

� �0 is the initial pheromone level
which is assumed to be a small posi-
tive constant distributed equally on all
the paths of the network.

The aim of the LUR is to make better
use of the pheromone information by
dynamically changing the desirability of
paths. Using the LUR, ants will search
near the best previous schedule. As shown
in this equation, the pheromone level on
the paths of the constructed schedule is
highly related to the value of evapora-
tion parameter �. The pheromone level
will be reduced when � has a big value
and this will reduce the chance that
the other ants will select the same sched-
ule and consequently the search will
be more diversified. Therefore, care must
be taken when choosing the value of �
to balance the search process.

The Global Updating Rule. When all ants
have completed their schedules, the
pheromone level is updated by applying
the global updating rule (GUR) only
on the paths that belong to the best sched-
ule since the beginning of the trail, as
follows:

(4)

where

another in one step.
Within the context of GPS surveying,

the LSM attempts to improve a given
schedule by a series of local improve-
ments (swapping sessions). We have
developed and implemented the most
suitable local search structure that sat-
isfies the GPS requirements. In this
sequential structure, which is based
on the sessions-interchange, the poten-
tial pair-swaps are examined in the order
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and where
� CGBS is the cost of the best found

schedule from the beginning;
� ��(i,j) is the pheromone level on

path (i,j); and
� 	 is an evaporation parameter.
The GUR rule is intended to provide

a greater amount of pheromone on the
paths of the best schedule, using 
 to
intensify the search around this sched-
ule. In other words, only the best ant that
took the shortest route between sessions
is allowed to deposit pheromone.

Implementation of the Algorithm
To improve the search process, we must
carefully choose the components when
applying the ACS algorithm to the GPS
network problem. These components,
which must be defined according to the
size and type of the network to which they
are to be applied, are the structural ele-

ments and control parameters.
The structural elements determine the

procedure in which the GPS network
is modelled in order to fit the ACS frame-
work. They consist of: the cost matrix
(travel time between sessions), the cost
function (total time �Cij to complete the
observation of all the required sessions
in the network); the number of ants and
their initial starting locations (the num-
ber of ants can be set equal to the num-
ber of the sessions to be observed and
ants can be located randomly or selec-
tively for the initial sessions); and the
taboo (spelled tabu in the mathematical
literature) list (associated with each ant
in order to prevent it from visiting a ses-
sion more than once).

The control parameters govern the work-
ings of the ACS technique itself and are
mainly concerned with pheromone infor-
mation. They consist of: the pheromone
intensity control parameter �, the visi-
bility control parameter �, the evapora-
tion control parameters � and 	,  and the
stopping criterion (which, in the current
implementation of the technique, termi-
nates the process after a pre-defined num-

ber of iterations). Recall that parameter
	 is used in the global updating rule to
direct the search by adding the pheromone
on the paths of the best-obtained sched-
ule. Parameter � is used in the local update
rule to diversify the search by removing
some pheromone from the paths of the
current schedule.

The basic ACS technique produces
only the best-found solution from the
beginning which satisfies the stopping
criteria. The modified GPS-ACS tech-
nique adopts a candidate list which con-
tains extra alternatives for the obtained
good schedules as well as the best one.
The number of these alternatives (that
is, the length of the candidate list) is
dependent on the user.

The main objective of this list is to give
alternatives for the surveyor to select the
best schedule which satisfies all the GPS
field-work requirements. The candidate
list is a data structure which contains
the best possible schedules found from
the beginning of the search process. At
the end of each iteration, the algorithm
compares the contents of the new can-
didate list for the current iteration with
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the contents of the old candidate list for
the previous iteration and then selects
the best schedules among all the oth-
ers for further comparison. This process
of comparisons to select the best candi-
date list continues through the search
process until the algorithm meets the
stopping criteria. At the end of the search
process, the algorithm keeps in the final
candidate list the best schedules found
from the beginning.

In this algorithm, each ant will con-
struct one possible design of the whole
GPS network. During an initialization
phase, ants are randomly positioned on
different sessions with empty tabu lists
and the paths connecting the sessions to
observe have initial values for trail inten-
sity. The schedule construction stage
starts when every ant chooses to move
from session i to session j with a prob-
ability which is a function of the inten-
sity and visibility measures.

Each time an ant makes a move, it
leaves a pheromone trail on the con-
necting path which then will be col-
lected and used to compute the new val-
ues for the transition probabilities
according to Equations (1) and (2). After
(u�1) moves, ants complete their sched-
ules in which the tabu list of each ant
will be full. The cheapest schedule found
is computed and memorized; then tabu
lists are emptied for the next iteration.
The algorithm iterates the optimization
process for the proposed ACS technique
until the stopping criteria to find the best
possible schedule are met. The sidebar

“Solving the GPS Network Problem Using
the Ant Colony System Algorithmic
Procedure” shows the structure of the
ACS algorithm for optimizing the GPS
network problem. 

Computational Results
In metaheuristics it is preferable to eval-
uate the performance of a proposed tech-
nique by comparison with an existing
optimal solution. This section assesses
the effectiveness of the ACS algorithm
and compares its performance with respect
to solution quality and computational
effort with that of an alternative tech-
nique. A common measure to define the
quality of the ACS solution is the rela-
tive percentage deviation (RPD) from the
optimal solution, which can be computed
as follows: 

RPD = [ACS Solution - Optimal
Solution/(ACS Solution)] � 100.

Peter Dare, now teaching at the
University of New Brunswick, obtained
some known optimal schedules for rela-
tively small GPS surveying networks. The
first one was a hypothetical GPS network
and consisted of six sessions. The cost of
the metaheuristic schedule obtained using
the proposed ACS technique was the same
as the known optimal schedule. The
process of the ACS was terminated when
the stopping criterion was met after a
defined number of iterations, k = 8.

The selected control parameters for
this network were � = 1, � = 1 and � =
	 = 0.3. The second network was an actu-
al GPS network observed in New

FIGURE 3 Malta GPS surveying network.

[I]  INITIALISATION
(A) FORMULATING the original cost matrix:
{Original cost matrix represents the cost of moving

the receiver from one station to another}
insert the total number of stations, n;
insert the estimated cost for each receiver’s move.
(B) CREATING the actual cost matrix: 
{Actual cost matrix represents the cost of moving the

receiver from one session to another} 
insert the number of receivers, r;
define the sessions to be observed, u. 
(C) DETERMINING the structural elements:
set the number of ants M (M=U);
set the tabu list for each ant; 
set the candidate list for the best found schedules;
set the initial pheromone �0.
(D) INITIALIZING the control parameters:
set the trail control parameter �;
set the visibility control parameter �;
set the evaporation control parameters 
 and �;
set the iteration counter, K=0.

[II] SELECTION AND ACCEPTANCE STRATEGY
(E) SELECTING the best admissible move of cost

C(Vbest): 
build up the cheapest schedule by applying (u-1)

moves;
select the next potential move using the probabili-

ty equations (Equations 1 and 2);
add the observed sessions by each ant to its tabu

list as it proceeds, then empty the tabu list when the
schedule is completed;

apply the local search method.
(F) UPDATING the pheromone level: 
apply the local update rule for each path as each

ant proceeds till the schedule is completed using
(Equation 3) 

apply the global update rule on the paths of the
best found schedule from the beginning using
(Equations 4);

update the counter K=K+1, and the process con-
tinues.

[III] THE STOPPING RULES
(G) TERMINATING the search:
stop if the stopping criterion is satisfied; 
given number of iterations, OR
maximum number of iterations allowed without

improving the best obtained schedule.
OTHERWISE
Go to (E).
(H) DECLARING the output:
declare the best obtained schedule;
declare the computation time;
END.

Solving the GPS Network
Problem Using the Ant
Colony System Algorithmic
Procedure
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Brunswick, Canada and consisted of ten 
sessions. By applying the ACS technique,
the same cost as the optimal schedule
was obtained and the technique stopped
when there were no further im-prove-
ments after k = 10 iterations. The select-
ed control parameters for this network
were � = 1, � = 1 and 	 = 0.6, and � =  0.3.

To generalize the developed ACS tech-
nique and work with larger networks,
we used two different types and sizes of
GPS surveying networks. The first one
is a triangulation-type network on the
island of Malta consisting of 38 sessions
and 25 stations as shown in Figure 3. The
second one is a linear-type network in
the Seychelles, consisting of 71 sessions
and 57 stations, as shown in Figure 4.

Several benchmarks or reference sched-
ules were available for these networks,
which allowed for comparisons with
respect to the effectiveness and com-
putational efficiency of the proposed ACS
technique. For the Malta network, the
first benchmark represented the actual
operating schedule with a cost of 1,405
minutes. The surveyors carrying out the
work used their intuition and experience
to manually generate this schedule. The

other two benchmarks
were the metaheuris-
tic schedules obtained
by applying simulated
annealing and tabu
search techniques and
had a cost of 1,355 min-
utes and 1,075 minutes
respectively. By imple-
menting the ACS tech-
nique using the same
data set of 38 sessions,
the overall cost to
observe the Malta GPS
network was reduced
to 895 minutes after 80
iterations. The select-
ed control parameters
for this network were
� = 1, � = 2 and 
	 = 0.7, and � = 0.4.

For the Seychelles
GPS network, the first
benchmark, which was
manually generated, rep-
resented the actual oper-
ating schedule with a
cost of 994 minutes. The
other two benchmarks
were the meta-
heuristic sched-
ules obtained by
applying simulat-

ed annealing and tabu search tech-
niques and had a cost of 976 minutes
and 933 minutes respectively. By
implementing the ACS technique
using the same data set, the overall
cost to observe the Seychelles GPS
network was reduced to 853 minutes
after 100 iterations.  The selected con-
trol parameters for this network were 
� = 1, � = 2 and 	 = 0.6, and � = 0.3.

Comparative Analysis
The main goal of the developed
metaheuristic techniques is to min-
imize the overall observation times
of the GPS networks. The most use-
ful measure for the evaluation the
performance of these techniques
is the relative reduction of the cost
(RRC) provided by these techniques
with respect to the actual opera-
tional schedule, that is, 

RRC=[(COS-CACS)/COS] � 100
Figure 5 and Figure 6 illustrate the

RRC achieved by the GPS-ACS tech-
nique for the Malta and the
Seychelles networks compared
to the simulated annealing and tabu
search techniques. The achieved

results, listed in Table 1, indicate that the
developed GPS-ACS metaheuristic tech-
nique consistently produced better sched-
ules.

We experimented with different para-
meter settings to investigate the impact
of the control parameters on solution qual-
ity. When we tested the value of one para-
meter, we set the others at their default
value, namely 	 = 0.5, � = 0.3, � = 2 and
� = 1. The values of parameter � lead-
ing to better results vary widely between
1 and 3. Parameter � is used to adjust the
relative importance of pheromone traces
when evaluating the cost of a path.

With regards to parameter 	, good
results were obtained with values small-
er than 0.6. On the other hand, larger
values of 
 tend to bias the search process
toward elite schedules and lead to para-
meter convergence.

For parameter �, better results were
found when � = 0.3 which indicate that
a significant level of diversification is
desirable.

To test our ideas and to try them out
on hypothetical and real networks, we
coded all the developed algorithms in
the Visual C++ programming language.

FIGURE 4 The Seychelles GPS surveying network.

FIGURE 5 The RRC for the best schedule for
observing the Malta GPS network obtained by 
the simulated annealing (SA), tabu search (TS)
and ant colony system (ACS) GPS metaheuristic
techniques.
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FIGURE 6 The RRC for the best schedule for
observing the Seychelles GPS network obtained
by the simulated annealing (SA), tabu search (TS)
and ant colony system (ACS) GPS metaheuristic
techniques.
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Conclusion 
We have successfully applied the ACS
metaheuristic technique to the GPS sur-
veying network problem and obtained
good results for networks consisting of
up to 57 stations. Future research should
include the analysis of parameter set-
tings for even larger GPS networks.
Another important direction for research
in this area is to add different local search
strategies to the main program to explore
the schedule space more effectively and
provide good results. 

Another application in which the meta-
heuristic techniques can be implemented
is the optimization of ambiguity resolu-
tion in GPS data. GPS carrier-phase mea-
surements contain an unknown num-
ber of integer wavelengths which biases
all measurements in an unbroken sequence
of satellite observations. This unknown
number of integer wavelengths, called inte-

ger ambiguity, must be determined cor-
rectly to quickly provide high precision
GPS positioning. However, resolving GPS
ambiguity problem is a complex task when
high performance and computational effi-
ciency are required. The research on meta-
heuristic techniques is a promising direc-
tion for producing an effective time-efficient
solution to this problem.
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TABLE 1 Comparison of GPS Metaheuristic Techniques on Malta and
Seychelles Networks

Network Information GPS Metaheuristic Techniques
GPS-SA GPS-TS GPS-ACS

Network U COS CSA K ET CTS K ET CACS K ET
Malta 38 1,405 1,355 14,880 425 1,075 28 6 895 80 44

Seychelles 71 994 976 115,920 1,700 933 20 40 853 100 153
where
� N is the number of sessions.
� COS is the cost of the operational solution created by an experienced surveyor.
� CSA is the cost of the metaheuristic solution created by simulated annealing technique.
� CTS is the cost of the metaheuristic solution obtained by tabu search technique.
� CACS is the cost of the metaheuristic solution obtained by ant colony system technique.
� K is the number of iterations.
� ET is the execution time in seconds.
All costs are in minutes. 
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