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Abstract. In this paper we present an evolutionary algorithm which
evolves the choice of the heuristics to be used at each step of the building
process of a timetable. The original idea was developed at the EvoNet
Summer School 2001, and published in [1]. Here we propose an improved
algorithm with a different representation, and new sets of heuristics.

1 Introduction

Since their first applications to timetabling problems at the beginning of the
1990s, evolutionary algorithms have been extensively and successfully used to
tackle the problem. Most approaches in the literature use a direct encoding.
However it is often difficult to apply traditional crossover operators and some
kind of repair mechanism is needed. Also, EAs fail to coordinate in solving
different parts of the problem as shown in [7]. B. Paechter et al. [6] successfully
use an indirect representation to tackle a real university timetabling problem.
A different indirect approach is taken by Terashima-Maŕın et al. in [10], where
they evolve different strategies to tackle examination timetabling using well-
established problem-specific heuristics. We attempt here a similar approach for
university course timetabling, evolving which heuristic is best used at each step
of the building process of a timetable. In fact domain specific heuristics have
been used in timetabling ever since the first attempts to automation [3], [2]. In
particular sequential methods use heuristics to estimate how difficult an event
will be to schedule, so to order the events by decreasing difficulty and first
schedule the most problematic ones, which are most likely to cause problems if
left until the end of the building process. Heuristic sequential methods generally
produce acceptable results, and are computationally inexpensive. However they
lack optimisation capabilities. That is why we think that they are best used in the
context of a hyperheuristic approach. Hyperheuristics are heuristics which guide
the choice of simpler problem-specific heuristics. They have proven successful
in a number of applications, e.g scheduling [4], [5] and bin-packing [8]. The EA
presented mix-and-matches heuristics to avoid the weakness of any single simple
algorithm, evolving a strategy for solving the problem, rather than a specific
solution.



2 University Course Timetabling Problem

The timetabling problem considered here is a reduction of a typical university
timetabling problem. A problem instance generator produces problem instances
with different characteristics for different values of given parameters. The prob-
lem consists of a set of events E to be scheduled in 45 timeslots (5 days of 9
hours each), a set of rooms R in which events can take place, a set of students S
who attend the events, and a set of features F satisfied by rooms and required
by events. Each student attends a number of events and each room has a size. A
feasible timetable is one in which all events have been assigned a timeslot and a
room so that the following hard constraints are satisfied:

– no student attends more than one event at the same time;
– the room is big enough for all the attending students and satisfies all the

features required by the event;
– only one event is in each room at any timeslot.

In addition, a candidate timetable is penalised equally for each occurrence of the
following soft constraint violations:

– a student has a class in the last slot of the day;
– a student has more than two classes in a row;
– a student has a single class on a day.

3 The solution representation

The solution representation is indirect and a timetable builder is used to decode
the instructions encoded in the chromosome to produce a timetable.
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Fig. 1. Chromosome structure as a 2-row matrix.

A chromosome consists of two rows of integers of length |E| representing the
different heuristics to use at each step of the building process, as sketched in



Figure 1. The integer hi in position i of the first row tells the builder how to
choose the i-th event to insert in the timetable, while the integer ai in position i of
the second row is used to make an assignment of room and timeslot to the chosen
event. In a previous work [1] two distinct rules were tried for each assignment
of a chosen event, one to decide in which room the event should take place, and
the other one to decide in which timeslot. It is quite intuitive though that the
two choices are interconnected and it does not make much sense to decide to put
an event in a certain room without knowing in which timeslot and vice-versa.
Therefore we decided for using just one rule to make the complete assignment,
and this seems to give better performance. This is also due to the fact that in
this way it is easier to assess constraint violations of the whole assignment, and
we do that to help building feasible good timetables.

Each chromosome represents a unique timetable when it undergoes the de-
terministic step-by-step sequential building process outlined below.

1. Let Ei be the set of all the unscheduled events at step i;
2. choose an event ei ∈ Ei according to heuristic hi;
3. let Hi be the set of all possible room/timeslot assignments for ei causing

minimal hard constraint violations;
4. let Si be the subset of the assignments in Hi causing minimal soft constraint

violations;
5. choose an assignment for ei in Si according to heuristic ai;
6. repeat until i = |E| and all events have been inserted in the timetable.

4 The heuristics

Timetabling problems can be, and often are, seen as particular cases of graph
colouring problems, where events are the nodes of a graph, timeslots are the
colours to be assigned to each event, and clashes between any two events shar-
ing one or more students corresponds to the edges between nodes. Sequential
methods to solve graph colouring problems are extensively used and a number
of well-established heuristics are known to tackle them. These same heuristics,
opportunely adapted, can then be used to tackle timetabling: largest degree first;
largest colour degree first; and least saturation degree first. Moreover, a number
of heuristics have been and can be developed to better reflect the characteristics
of the timetabling problem in consideration: maximum weighted number of event
correlations (weighted largest degree first); maximum number of students; max-
imum number of features required by the events; minimum number of possible
rooms; event with room suitable for most events; least saturation degree includ-
ing room consideration. Of course these heuristics can be combined to break ties
and generate more heuristics, and sometimes that appears to be very beneficial.

As for the assignment of room and timeslot to the chosen event we tried to
look simply at timeslots in some previously intelligently arranged order, so to
spread difficult events out for instance. But it appears to give better results,
without being much more computationally expensive, to try to have a rule, or



a combination of rules such as the following: most parallel timeslots; smallest
possible room; room suitable for least events; least used room; latest or earliest
timeslot in the day; latest or earliest day in the week. Again combinations of the
previous rules to break ties seem to be most effective.

5 The evolution process

We implemented a Steady-State evolutionary algorithm with binary tournament
selection. The initial population is seeded with single heuristic chromosomes and
a number of randomly generated ones. We experimented with uniform and one-
point crossover and results seem to be very similar, except that with one-point
crossover the resulting simple algorithm is generally simpler to understand and
describe, so we prefer this last choice. Random mutation is applied at a rate
of 1/|E|, and at each generation the offspring replace the worst member of the
population.

6 Initial experiments and future work

The algorithm has been tested on randomly generated instances, mainly the five
medium instances used in [9], giving very competitive results with respect to
the algorithms described there for the two instances medium02 and medium05.
Not so good results are reached at the moment for the three other instances,
maybe because we have not found the most appropriate heuristics to tackle them.
Results are generally reasonable even before evolution, thanks to the seeded
population of single heuristic strategies, but soft constraints do decrease meaning
that better mixed strategies are found during the evolution process, up to a 50%
on the best single heuristic strategy, generally around 25%.

Graph colouring heuristics seem not to work so well. This is probably due to
the fact that they do not take into account students and rooms related issues,
which are crucial to our problem. In facts, heuristics involving number of students
and especially room related issues work much better. Moreover, graph colouring
heuristics are more computationally expensive, since they imply re-evaluating the
order of the list of events not yet scheduled at each insertion in the timetable.
For this reasons it might be better to discard them from the set of available
heuristics, at least on randomly generated instances produced by the problem
instance generator presented in [9]. It is possible that they might work better on
real data, where resources are generally less evenly distributed.

Further work has to be done to refine the set of heuristics and their combi-
nations and to test the algorithm on different kind of instances. The evolution
scheme might also be improved. Results of the improved algorithm on a variety
of instances will be provided at the conference.
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