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Abstract. The Group Shop Scheduling Problem (GSP) is a generaliza-
tion of the classical Job Shop and Open Shop Scheduling Problems. In
the GSP there are m machines and n jobs. Each job consists of a set
of operations, which must be processed on specified machines without
preemption. The operations of each job are partitioned into groups on
which a total precedence order is given. The problem is to order the
operations on the machines and on the groups such that the maximal
completion time (makespan) of all operations is minimized. The main
goal of this paper is to provide a fair comparison of five metaheuristic
approaches (i.e., Ant Colony Optimization, Evolutionary Algorithm, It-
erated Local Search, Simulated Annealing, and Tabu Search) to tackle
the GSP. We guarantee a fair comparison by a common definition of
neighborhood in the search space, by using the same data structure,
programming language and compiler, and by running the algorithms on
the same hardware.

1 Introduction to the Group Shop Scheduling Problem

A general scheduling problem can be formalized as follows: We consider a finite

set of operations O, partitioned into m subsets 〈M1, . . . ,Mm〉 =: M ( ˙⋃m

i=1Mi =

O) and into n subsets 〈J1, . . . , Jn〉 =: J ( ˙⋃n

k=1Jk = O), together with a partial
order ¹ ⊆ O×O such that ¹ ∩ Ji×Jj = ∅ for i 6= j, and a function p : O → N.
A feasible solution is a refined partial order ¹∗ ⊇ ¹ for which the restrictions
¹∗ ∩ Mi ×Mi and ¹∗ ∩ Jk × Jk are total ∀ i, k. The cost of a feasible solution
is defined by

Cmax(¹∗) := max{
∑

o∈C

p(o) | C is a chain in (O,¹∗)} .

We aim at a feasible solution which minimizes Cmax.



Mi is the set of operations that have to be processed on machine i. Jk is
the set of operations that belong to job k. Each machine can process at most
one operation at a time. Operations must be processed without preemption.
Operations belonging to the same job must be processed sequentially. This is
expressed in the constraints for ¹∗. Cmax is the makespan of the schedule defined
by ¹∗ .

This brief problem formulation covers well known scheduling problems: The
restriction ¹ ∩ Ji × Ji is total in the Job Shop Scheduling Problem (JSP),
trivial (= {(o, o) | o ∈ Ji}) in the Open Shop Scheduling Problem (OSP), and
either total or trivial for each i in the Mixed Shop Problem.

In this paper, we consider a weaker restriction on ¹ which includes the above
scheduling problems by looking at a refinement of the partition J to a partition
into groups 〈G1, . . . , Gg〉 =: G. We demand that ¹ ∩ Gi ×Gi has to be trivial
and that for o, o′ ∈ J (J ∈ J ) with o ∈ Gi and o′ ∈ Gj (i 6= j) either o ¹ o′ or
o º o′ holds. We call this problem Group Shop Scheduling Problem (GSP).Note
that the coarsest refinement G = J (groups sizes are equal to job sizes) is
equivalent to the OSP and the finest refinement G = {{o} | o ∈ O} (group sizes
of 1) is equivalent to the JSP. In the following, for G ∈ G we denote o ∈ G by
g(o) = G; for M ∈ M we denote o ∈ M by m(o) = M . An example for a GSP
instance is given in Fig. 1.
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Fig. 1. (a) An example for a GSP instance on 8 operations: O = {1, . . . , 8}, J =
{J1 = {1, 2, 3}, J2 = {4, 5, 6}, J3 = {7, 8}}, M = {M1 = {1, 5, 7}, M2 = {2, 4}, M3 =
{3, 6, 8}}, G = {G1 = {1, 2}, G2 = {3}, G3 = {4}, G4 = {5, 6}, G5 = {7}, G6 = {8}},
G1 ≺ G2, G3 ≺ G4, G5 ≺ G6, p(1) = · · · = p(4) = 1, p(5) = · · · = p(8) = 2; (b) a valid
solution with Cmax = 8 on the chain 2 ¹∗ 1 ¹∗ 5 ¹∗ 7 ¹∗ 8; (c) an optimal solution
with Cmax = 6 on the chain 7 ¹∗ 5 ¹∗ 6

2 Common Neighborhood and Local Search

For a feasible solution ¹∗ a chain C is called critical path iff
∑

o∈C p(o) =
Cmax(¹∗). M induces on a critical path o1 ¹∗ · · · ¹∗ oq a subdivision into
machine blocks of consecutive operations belonging to the same machine, as well
as G induces a subdivision into group blocks of consecutive operations belonging
to the same group. Brucker et al. [6] proved for the JSP that if there is a feasible
solution ¹∗′ with Cmax(¹∗′) < Cmax(¹∗), then there is a machine block Bi

M =
oi1 ¹

∗ · · · ¹∗ oimi
on a critical path C of ¹∗ such that ∃ o ∈ Bi

M , o 6= oi1 with



oi1 º
∗′ o or ∃ o ∈ Bi

M , o 6= oimi
with oimi

¹∗′ o. For the GSP, we generalize the
above result.

Theorem 1. Let ¹∗ be a feasible solution to a GSP instance. If there is a

solution ¹∗′ with Cmax(¹∗′) < Cmax(¹∗), then there is a machine or a group

block Bi = oi1 ¹
∗ · · · ¹∗ oini

in C such that ∃ o ∈ Bi, o 6= oi1 with oi1 º
∗′ o or

∃ o ∈ B, o 6= oini
∈ B with oni

¹∗′ o.

For the proof we refer to an extended version of this paper [14]. By this
theorem it is reasonable to define the neighborhood of a feasible solution ¹∗ as
follows: A feasible solution ¹∗′ is a neighbor of ¹∗ (∈ N(¹∗)) if in a critical path
C of ¹∗ for exactly one machine block or exactly one group block B = o1 ¹

∗

o2 ¹
∗ · · · ¹∗ onk−1 ¹

∗ onk
on C the order of o1 and o2 or the order of onk−1 and

onk
is swapped in ¹∗′. This is an extension of the neighborhood which Nowicki

and Smutnicki [13] used in their tabu search for the JSP.
A local search procedure can be defined recursively on the neighborhood

structure as follows:

ls(¹∗) =

{
¹∗ if Cmax(¹∗′) ≥ Cmax(¹∗) ∀ ¹∗′∈ N(¹∗),
ls(¹∗′′) with Cmax(¹∗′′) ≤ Cmax(¹∗′) ∀ ¹∗′∈ N(¹∗) otherwise.

3 Metaheuristic Approaches

The OSP is an NP-hard problem (Gonzalez and Sahni [11]). The JSP is an
NP-hard problem as well, as was first shown by Lenstra et al. [12]. As the GSP
contains both problems, it is NP-hard, too. Metaheuristics have shown to be
very successful in constructing good solutions to scheduling problems. BÃlażewicz
et al. [2] gave a survey on exact and approximation algorithms for the JSP. Fang
et al. presented a genetic algorithm for the OSP, and Taillard [16] published a
Tabu Search approach.

In the following, we describe five metaheuristics for the GSP, and we an-
alyze how they compare to each other. We study their behavior on the range
of GSP instances from the JSP to the OSP and focus on the influence of the
group size on the quality of the algorithms. We aim at a fair comparison of the
metaheuristic concepts. Therefore we use a joint implementation of the problem
representation and of the neighborhood structure. We explicitly don’t aim at the
use of sophisticated methods to tune the algorithms.

3.1 Ant Colony Optimization

Ant Colony Optimization (ACO) is a metaheuristic approach proposed by Dorigo
et al. in [8]. The basic ingredient of ACO is the use of a probabilistic solution
construction mechanism. The best known technique to construct solutions to
scheduling problems is the list scheduler algorithm. To construct a solution, this
list scheduler algorithm builds a sequence s of all operations from left to right. In
every one of the |O| construction steps, the algorithm probabilistically chooses
an operation from a set St (where t = 1, ..., |O|) of admissible operations.



We use the pheromone model called PHrel (proposed by Blum and Sampels
in [5]) where pheromone values are assigned to pairs of related operations. Two
operations oi, oj ∈ O are called related if they belong to the same group, or if
they have to be processed on the same machine. Formally, a pheromone value
τoi,oj

exists, iff g(oi) = g(oj) or m(oi) = m(oj). The meaning of a pheromone
value τoi,oj

is that if τoi,oj
is high then operation oi should be scheduled before

operation oj . The choice of the next operations to schedule is handled as follows.
If there is an operation oi ∈ St with no related and unscheduled operation left, it
is chosen. Otherwise we choose among the operations of set St with the following
probabilities:

p(s[t] = o | st−1,|O|, τ) =







min
or∈Srel

o
τo,or

∑

ok∈St
min

or∈Srel
ok

τok,or

: if o ∈ St

0 : otherwise

where Srel
o = {o′ ∈ O | m(o′) = m(o) ∨ g(o′) = g(o), o′ not scheduled yet}.

We also use the earliest starting time of operations with respect to the partial
solution st−1,|O| as heuristic information to bias these probabilities.
We implemented our algorithm in the Hyper-Cube Framework [4]. The Hyper-
Cube Framework is characterized by a normalization of the contribution of every
solution used for updating the pheromone values. Our algorithm is also imple-
mented as a MAX -MIN Ant System using an aggressive pheromone update
and additional intensification and diversification strategies. To improve the solu-
tions constructed by the ants we apply the local search defined in Sect. 2 and to
the iteration best solution we apply a short Tabu Search of length |O|/2 based on
the same neighborhood. A more detailed description of the this ACO algorithm
can be found in [3].

3.2 Evolutionary Algorithm

The evolutionary algorithm (EA) implemented for the GSP is characterized by
a steady-state evolution process and a Lamarckian use of local search. We use a
best improvement local search on the neighborhood defined in Sect. 2. Tourna-
ment selection is used to choose which individuals reproduce at each generation
and a “replace if better policy” is used to decide whether or not to accept the
offspring for the new population.

The initial population is built using the non-delay version of the list scheduler
algorithm introduced in Sect. 3.1. It builds non-delay schedules, i.e. schedules
with no unnecessary idle time: No operation can be finished earlier without de-
laying any other one, and no machine is ever idle when there is an operation that
can be started on it. The population size is set to 50. A solution is represented
by a list (total order on O), which induces a total order on each M ∈ M and
each G ∈ G.

The crossover is a kind of uniform order based crossover respecting group
precedence relations. It generates a child from two parents as follows:



1. Produce a partial child list where each position is either filled with the content of
the first parent or left free, with equal probability.

2. Insert the missing operations in the partial list in the order in which they appear
in the second parent.

3. Put the current operation in the first free position between the last operation of
the previous group (first position in the list if the group is the first on the job) and
the first of the next ones (last position in the list if the group is the last on the
job), if there is any.

4. Otherwise, if there is a free position before the last operation of the previous group,
shift backward all operations to fill the first free position and insert the current
operation just before the first operation of the next groups.

5. Otherwise put the current operation in the position of the first operation of the
next groups shifting forward the following operations until the next free position
is filled.

As mutation operator we implemented a variable neighborhood search (VNS)
based on the local search described in Sect. 2 for Nk, k = 1, . . . , 10, where
Nk(¹∗) = N(N(· · ·N

︸ ︷︷ ︸

k

(¹∗))). That means that a random solution in N1 is chosen

first, then the local search is applied, and if no improvement is found, a random
solution in N2 is chosen followed by local search, then a random solution in N3

and so on until a better solution is found. The mutation rate is set to be 0.5.

3.3 Iterated Local Search

Iterated local search (ILS), in spite of its simplicity, is a powerful metaheuristic
that applies a local search algorithm iteratively to modifications of the current
solution. A detailed description of ILS algorithms can be found in [15]. It works
as follows. First an initial locally optimal solution, with respect to the given local
search, has to be built. A good starting point can be important, if high-quality
solutions are to be reached quickly. Then, more importantly, a perturbation has
to be defined, that is a way to modify the current solution to an intermedi-
ate state to which the local search can be applied next. Finally, an acceptance
criterion is used to decide from which solution to continue the search process.

The implementation described here for the GSP works with the local search
described in Sect. 2. The initial solution is generated using the same non-delay
algorithm as in Sect. 3.1. The idea used for the perturbation is to modify slightly
the definition of the problem instance data and apply the local search for this
modified instance to the current solution regarded as a solution in the new
instance; the result is the perturbed solution in the original problem instance.
In the GSP the processing times of the operations, unlike group or machine
data, can be easily modified so that a solution to one problem instance can
be regarded as a solution to the other. For a percentage α of operations the
processing time is therefore increased or decreased, with the same probability,
by a certain percentage β of its value; then the local search within the modified
problem instance is run for the current solution and finally the resulting locally
optimal solution to the modified instance, regarded as a solution to the original



instance, is the perturbed solution. Note that it is not necessarily a local optimum
for the original instance. Now the local search can be applied to the intermediate
perturbed solution to reach a locally optimal solution.

Finally the acceptance criterion tells us whether to continue the search from
the new local optimum or from our previous solution. Random walk, better,
and simulated annealing type acceptance criteria have been tested along with
different values for α and β. The random walk acceptance criterion with α = 40
and β = 40 has been selected as it gives the best performance.

3.4 Simulated Annealing

Simulated annealing (SA) is a metaheuristic based on the idea of annealing in
physics [1]. This technique can be used to solve combinatorial optimization prob-
lems, especially to avoid local minima that cause problems when using simpler
local search methods. The algorithm starts out with some initial solution and
moves from neighbor to neighbor. If the proposed new solution is equal to or
better than the current solution, it is accepted. If the proposed new solution
is worse than the current solution, it is even then accepted with some positive
probability. For the GSP the latter probability is

Paccept = exp(−
∆

T
) = exp(−

(Cmax(¹∗′)− Cmax(¹∗))/Cmax(¹∗)

T
),

where ¹∗ denotes the current solution, ¹∗′ denotes the the proposed next solu-
tion, ∆ is the percent cost change, and the temperature T is simply a control
parameter. Ideally, when local optimization is trapped in a poor local optimum,
simulated annealing can “climb” out of the poor local optimum. In the begin-
ning the value of T is relatively large so that many cost-increasing moves are
accepted in addition to cost-decreasing moves. During the optimization process
the temperature is decreased gradually so that fewer and fewer cost-increasing
moves are accepted.

The selection of the temperature is done as follows. We set the initial tem-
perature such that the probability to accept a move with ∆ = δ = 0.01 is
Pstart = 0.9. Moreover, at the end of the optimization process, we would like
that the probability to accept a move with ∆ = δ = 0.01 is Pend = 0.1. With this
requirements, we constraint the temperature at time x to be T = rxτmax, where
τmax = −δ/ lnPstart, r = tmax

√

δ/(ln(1/Pend) · τmax), and where tmax denotes
the maximum time allowed for computation.

3.5 Tabu Search

Tabu search (TS) is a local search metaheuristic which relies on specialized
memory structures to avoid entrapment in local minima and achieve an effective
balance of intensification and diversification. TS has proved remarkably power-
ful in finding high-quality solutions to computationally difficult combinatorial
optimization problems drawn from a wide variety of applications [1, 10]. More



precisely, TS allows the search to explore solutions that do not decrease the
objective function value only in those cases where these solutions are not forbid-
den. This is usually obtained by keeping track of the last solutions in term of the
move used to transform one solution to the next. When a move is performed it
is considered tabu for the next T iterations, where T is the tabu status length.
A solution is forbidden if it is obtained by applying a tabu move to the current
solution.

According to the neighborhood defined in Sect. 2, a move for the GSP is
defined by the exchange of certain adjacent critical operation pairs. We forbid
the reversal of the exchange of a critical operation pair by recording the iteration
number on which the exchange was performed and requiring that this number
plus the current length T be strictly less than the current iteration number.

The tabu status length T is crucial to the success of the TS procedure, and we
propose a self-tuning procedure based on empirical evidence. T is dynamically
defined for each solution. It is equal to the number c of operations of the current
critical path divided by a suitable constant d (we set d = 5). We choose this
empirical formula since it summarizes, to some extent, the features of the given
problem instance and those of the current solution. For instance, there is a
certain relationship between c and the instance size, between c and the quality
of the current solution. In order to diversify the search it may be unprofitable to
repeat the same move often if the number of candidate moves is “large” or the
solution quality is low, in some sense, when c is a “large” number.

With the aim of decreasing the probability of generating cycles, we consider
a variable neighborhood set: every non tabu move is a neighbor with probability
0.8. Moreover, in order to explore the search space in a more efficient way,
TS is usually augmented with some aspiration criteria. The latter are used to
accept a move even if it has been marked tabu. We consider a tabu move as a
neighbor with probability 0.3, and perform it only if it improves the best known
solution. To summarize, the proposed TS considers a variable set of neighbors
and performs the best move that improves the best known solution, otherwise
performs the best non tabu move chosen among those belonging to the current
variable neighborhood set.

4 Problem Instances

We tested the proposed metaheuristics on the whizzkids97 instance. This is a
GSP instance that was subject to a mathematics competition in The Netherlands
in 1997 [18]. It consists of 197 operations on 15 machines and 20 jobs which are
subpartitioned into 124 groups. As this is the only established GSP instance, we
derived further problem instances from JSP instances.

The most prominent problem instance for the JSP is a problem with 10
machines and 10 jobs which was introduced by Fisher and Thompson [9] in 1963.
It had been open for more than twenty years before the optimality of one solution
was proved by Carlier and Pinson [7]. Another famous series of 80 problem
instances for the JSP and 60 OSP instances was generated by Taillard [16]. We



used the Fisher-Thompson-instance ft10 and Taillard’s first JSP instance tai1

on 15 jobs and 15 machines to generate 10 resp. 15 new benchmark instances for
the GSP. For both problems, we refined the job partition into a group partition
by subdividing each Ji = oi1 ¹ · · · ¹ oiji

into b groups of fixed length g = 1, . . . , 10
resp. = 1, . . . , 15 (and possibly one last group of shorter length):

{oi1, . . . , o
i
g}, {o

i
g+1, . . . , o

i
2g}, . . . , {o

i
(b−1)g+1, . . . , o

i
ji
} (b = dji/ge) .

5 Evaluation and Conclusion

We tested the five developed metaheuristics on a PC with an AMD Athlon 1100
Mhz CPU under Linux using the GNU C++ compiler gcc version 2.95.3.2 For
the whizzkids97, we tested each metaheuristic for 30 trials of 18000 seconds
each (see Fig. 2). TS, although not finding the best solutions found by SA and
ILS, showed the best overall performance, followed by ILS, SA, ACO, and EC.
We tested the statistical significance of the differences between the algorithms
by a pairwise Wilcoxon rank test, which was adjusted by Holm’s method [17]
for 5 samples. They are significant at a p-value of less than 0.01.

We further tested our metaheuristics on the 10 GSP instances derived from
ft10 for a time limit of 60 seconds per try (see Fig. 3). TS showed the best result
for most group sizes, and ACO was on the second rank. EC performed well for
small and large group sizes, but was worse than SA for groups of medium size.

We observed a similar behavior for the 15 instances derived from tai1, which
we tested for running times of 600 and 1800 seconds per try. ACO is for nearly
all group sizes quite close to the performance of TS. However, the TS is the
only algorithm that finds (even within 600 seconds) the optimal solution for the
original JSP version of tai1. EC again performs rather poorly on medium group
sizes and performs well on small and big group sizes.

We noticed that the SA in general compared well to the other algorithms.
This indicates the power of the neighborhood structure defined in Sect. 2. Al-
though the TS approach yielded the overall best performance, for some group
sizes other metaheuristics showed advantages. Our fair comparison showed that
depending on the position of the problem instance between the JSP and the
OSP different heuristic techniques are helpful. The GSP might best be tackled
by a hybrid metaheuristic approach that combines the elements of the algorithms
described in this work according to the results of our analysis.
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