Evolutionary Algorithm for Multiple Knapsack
Problem

Stefka Fidanova

IRIDIA - Université Libre de Bruxelles, Av. Roosevelt 50 - Bruxelles, Belgium
fidanova@Qulb.ac.be

Abstract. In the fields of evolutionary computation some interesting
developments similar to ant colony optimization (ACQO) algorithms have
been proposed. The relation between ACO algorithms and evolutionary
algorithms provides a structured way of handling constrained problems
which the other approaches are lacking. The idea of ACO algorithms
come from nature, the (artificial) ants use (artificial) pheromone to eval-
uate solutions. In this paper we present a new procedure to update the
pheromone using additional reinforcement. Our modified ACO algorithm
differs from the original ACO algorithms in several important aspects,
whose usefulness we demonstrate by means of an experimental study.
For experimental study we use the multiple knapsack problem (MKP),
which is a real-life constraint optimization problem.

1 Introduction

There are many NP-hard combinatorial optimization problems (COP) for which
it is impractical to find an optimal solution. For such problems the only rea-
sonable way is to look for metaheuristic algorithms that quickly produce good,
although not necessarily optimal, solutions. Many researchers have focused on a
new class of algorithms called metaheuristics. Metaheuristics are general algo-
rithmic frameworks that can be applied to several different optimization prob-
lems with few modifications. Examples of metaheuristics are simulated annealing
[1,10], evolutionary computation [6] and tabu search [9]. Metaheuristics are of-
ten inspired by natural processes. The above-cited metaheuristic were inspired,
respectively, by the physical annealing process, the Darwinian evolutionary pro-
cess and the clever management of memory structures.

In the last decade in the field of Evolutionary Computation some interesting
developments quite similar to ACO algorithms have been proposed. They have in
common the use of a probabilistic mechanism for recombination of individuals.
This leads to algorithms where the population statistics are kept in probability
vectors. In each iteration of the algorithm these probabilities are used to gen-
erate new solutions. The new solutions are then used to adapt the probability
vector. The first approach of such a kind was given by the work of Syswerda
[14], who replaced the usual two parent recombination operator by an operator
called Bit-Simulated Crossover. Another approach called Population-Based In-
cremental Learning has been proposed by Baluja [15]. The relation between ACO

algorithms and Evolutionary algorithms provides a structured way of handling
constrained problems which the other approaches are lacking.

ACO algorithms were inspired by the observation of real ant colonies[2,3,
5]. Ants are social insects, they live in colonies and whose behavior is directed
more to the survival of the colony as a whole than to that of a single individual
component of the colony. An interesting behavior of ant colonies is their foraging
behavior, and in particular, how ants can find the shortest paths between food
sources and their nest. While walking from a food sources to the nest and vice-
versa, ants deposit on the ground a substance called pheromone. Ants can smell
pheromone, and when choosing their way, they tend to choose, in probability,
paths marked by strong pheromone concentrations. The pheromone trail allows
the ants to find their way back to the food source (or to the nest).

ACO is the recently developed, population-based approach which has been
successfully applied to many NP-hard COP [4,7,8]. One of its main ideas is
the indirect communication among the individuals of ant colony, that is based
on an analogy with trails of pheromone which real ants use for communication.
The pheromone trails are a kind of distributed numerical information which
is modified by the ants to reflect their experience accumulated while solving a
particular problem.

The main purpose of this paper is to use additional reinforcement of the
pheromone to the unused movements and thus to effectively avoid premature
convergence of the search. We use a particular implementation of ACO algo-
rithm, known as ant colony system (ACS). For experimental study we use the
multiple knapsack problem (MKP), as a real-life constraint problem. The empir-
ical results show that the proposed ACO algorithm is currently among the best
ACO algorithms for the MKP [12]. The remainder of this paper is structured
as follows. Section 2 describes the modified ACO algorithm using additional
reinforcement. Section 3 investigates the applicability of the modified ACO al-
gorithm for MKP. Section 4 shows experimental results over some test problems.
The paper ends with conclusions and some remarks.

2 The ACO Algorithm

The ACO algorithm make use of simple agents called ants which iteratively con-
struct candidate solutions to a COP. The ants’ solution construction is guided
by pheromone trail and problem dependent heuristic information. The ACO al-
gorithms can be applied to any COP by defining solution components which
the ants use to iteratively construct candidate solutions and on which they may
deposit a pheromone. An individual ant constructs a candidate solution by start-
ing with a partial solution and then iteratively adding new components to their
partial solution until a complete candidate solution is generated. We will call
each point at which an ant has to decide which solution component to add to
its current partial solution a choice point. After the solution is completed, ants
give feedback on their solutions by depositing pheromone on the components
of their solutions. After that we reinforce the pheromone on the components of

the best found solution. Typically, solution components which are part of best
solution or are used by many ants will receive a higher amount of pheromone
and hence will be more attractive by the ants in future iterations. To avoid the
search getting stuck before the pheromone trails get reinforced all, pheromone
trails are decreased.

In general, all ACO algorithms adopt specific algorithmic scheme as follows.
After the initialization of the pheromone trails and control parameters, a main
loop is repeated until a termination condition - which may be a certain number
of iterations or a given CPU-time limit - is met. In the main loop, first ants con-
struct feasible solutions, then the pheromone trails are updated. More precisely,
partial solutions are seen as states: each ant moves from a state i to another
state j to this partial solution. At each step, ant k computes a set of feasible
expansions to its current state and moves to one of these expansions, according
to a probability distribution specified as follows. For ant k, the probability pfj
of moving from state ¢ to a state j depends on the combination of two values:

1. The attractiveness 7;; of the move, as computed by some heuristic infor-
mation indicating the a prior desirability of that move;

2. The pheromone trail level 7;; of the move, indicating how profitable it has
been in the past to make that particular move: it represents therefore a posterior
indication of the desirability of that move.

The probability pfj of selecting j as a next state is given as:

TijMij

if j € allowedy,
k Zlea”cwedk Ti1Mil
pij = ’ (1)
0 otherwise

allowedy, is the set of remaining feasible states. Thus the higher the value of the
pheromone and the heuristic information, the more profitable it is to include
state j in the partial solution.

In the beginning, the initial pheromone level is set to 79, which is a small
positive constant. While building a solution, the ants change the pheromone level
of the elements of all solutions by applying local updating rule:

Tij < (1 = p)735 + pTo, (2)

0 < p < 1 models evaporation. After all ants have completed their tours the
pheromone level of the elements of the best solution will be update as follows.

Tij < (1 — p)Tz'j + pATz'j, (3)

where A7;; depends to the quality of the best solution.

Stagnation situation may occur when we perform the ACO algorithm. This
can happen when the pheromone trail is significantly higher for one choice than
for all others. This means that one of the choices has a much higher pheromone
level than the others and an ant will prefer this solution component over all
alternatives. In this situation, ants construct the same solution over and over
again and the exploration of the search space stops. The stagnation situation

should be avoided and this can be done by influencing the probabilities for
choosing the next solution component, which depend directly on the pheromone
trails. Our idea is to use additional reinforcement for unused movements. If some
movements are not used in the current tour, additional pheromone reinforcement
will be used as follows.

Tij € Tij + qTo, (4)

where ¢ > 0 is a parameter. After additional reinforcement, unused movements
have great amount of pheromone than used movements that belong to poor
solutions and less to the used movements that belong to the best solution. Thus
the ants will be forced to choose new direction of search space without repeating
the bad experience.

3 The ACO algorithm for MKP

The MKP is a NP-hard COP and belong to the family of the constraint prob-
lems and we use it as a test problem in our experiments. MKP has received wide
attention from the operation research community, because its industrial appli-
cations. These applications include resource allocation in distributed systems,
capital budgeting and cutting stock problems and etc. In addition, MKP can be
seen as a general model for any kind of binary problems with positive coefficients
[11]. We can formulate MKP as:

max 2?21 bjz;
subject to Z?:l TijTj <g¢ 1= 1, .., Mm (5)

z; €{0,1} j=1,...,n.

There are m constraints in this problem, so MKP is also called m-dimensional
knapsack problem. Let I = {1,...,m} and J = {1,...,n}, with ¢; > 0 for all
i € I. A well-stated MKP assumes that p; > 0 and r;; < ¢; < 2?21 rij for
all i € T and j € J. Note that the [r;;],;xn, matrix and [¢;],, vector are both
non-negative.

MKP can be thought as a resource allocation problem, which is a real-life
problem, where we have m resources (the knapsacks) and n objects. Each re-
source has its own budget (knapsack capacity) and r;; represents the consump-
tion of resource j by object ¢. The problem is to maximize the profit within a
limited budget.

We define the graph of the problem as follows: the nodes correspond to the
items the arcs fully connect nodes. The pheromone trail is laid on the visited arcs.
For a partial solution Sy = {i1,42,...,4;} being built by ant k, the probability
pfp of selecting i, as the next item is given as follows:

TijipMip (Sk) e
= ijip Mip) if i, € allowedy,
ko iy Callowed,, ' 14% s Pk
p;, = b k , (6)

0 otherwise

where 7;,;, is a pheromone level on the arc (ij;,ip), 7, (S1) is the heuristic in-
formation and allowed}, is the set of remaining feasible items. Thus the higher
the value of 7;;;, and n;, (gk), the more profitable it is to include item 4, in the
partial solution.

Let s; = Y1, ri; for j € J. For heuristic information we use:

d1
;;% if Sj ;é 0
nij =% . (7)
pitif s;=0

Hence the objects with greater profit and less average expanses will be more
desirable.

While building a solution, the ants visit the arcs and change their pheromone
level. After all ants have completed their tours, global updating is performed. In
the case of MKP Ar;;, is as follows:

fob if (i;,1p) € global best tour
ATij"p = ? (8)
0 otherwise

fq is the best value of objective function from the beginning of the trial.

4 Experimental Results

This section reports the experimental results obtained by applying the mod-
ified ACO algorithm using additional reinforcement to the MKP. The modi-
fied algorithm have been tested on a set of large MKP from “OR-Library” (
http://mscmga.ms.ic.ac.uk/jeb/orlib). It was coded in C'language and run on a
Pentium IIT 900MHz. The best results were found when p = 0.9, d;,d> € [1,9]
and ¢ € [0,600]. For other parameters, 7o = 1 and n ants. In the beginning
of every iteration each node is occupied by an ant. The same result have been
achieved, for the same data and different runs, when using the same parameters
and the same number of iterations. The maximum number of cycles was set to
500 for all experiments.

The modified ACO algorithm have been compared with the MAX-MIN algo-
rithm [13], which is the best ACO algorithm. The idea of MAX-MIN algorithm is
to use Tpmin and Tmqz, & lower and an upper limit of the pheromone respectively.
For 7pqz is used the asymptotic upper bound of the pheromone. For lower limit
they use Tmin = Tmaz/2n, where n is the number of objects. For both algorithms

Table 1. The results of ACS algorithm with additional reinforcement and with upper
and lower limit of the pheromone, n is the number of objects, m is the number of
constraints

nxm |add. reinforc. MAX-MIN nxm |add. reinforc.| MAX-MIN
100x5 23984 23984 250%x5 58721 58721
100x5 24145 24143 250%x5 61161 60522
100x5 23523 23515 250%x5 61671 61208
100x5 22874 22874 250%x5 58317 58317
100x5 23751 23263 250%x5 58199 58199
100x5 24601 24523 250%x5H 59819 59762
100x5 25293 24769 250x5 60191 60125
100x5 23204 23204 250%x5 60707 60707
100x5 23762 23762 250x5 61576 61431
100x5 24255 24114 250x5 58323 H8188
100x5 42705 42705 250%x5 108731 108731
100x5 42445 42445 250x5 109049 109022
100x5 41581 41581 250%x5 108356 108238
100x5 44911 44911 250%x5 108766 108766
100x5 42025 42025 250%x5 110339 110159
100x5 42671 42609 250%x5 109243 109243
100x5 41776 41776 250%x5 108464 108464
100x5 44671 44559 250x5 107842 107435
100x5 43122 43122 250%x5 109712 109124
100x5 44471 44364 250%5 106002 105964
100x5 59798 59798 250%x5 149246 149246
100x5 61825 61637 250%5 155777 155777
100x5 59694 59694 250%x5 149104 148599
100x5 60479 60479 250%x5 151896 151889
100x5 61016 60954 250%x5H 149931 149420
100x5 58790 58695 250%x5 149789 149652
100x5 61429 61406 250%x5 148123 148123
100x5 61520 61520 250%x5 149589 149589
100x5 59290 59121 250%x5 154736 154736
100x5 59896 59864 250%x5 154600 154600

we use same parameters and same number of iterations. In all cases, the achieved
result of modified ACO algorithm is equal or better than the result of MAX-MIN
algorithm.

Table 1 shows a comparison between our modified ACO algorithm and MAX-
MIN algorithm. This table represents number of objects, number of constraints,
the best value achieved by both ACO algorithms. Bold numbers indicate the
best joined results. From the comparison, it is clear that the modified ACO
algorithm performs better than MAX-MIN ACO algorithm. The above results for
MKP suggest the effectiveness of the proposed ACO algorithm with additional
reinforcement.

5 Conclusion

In this paper we apply the modified ACO algorithm to MKP. This problem
received wide attention from the operation research community because its a
real-life problem. These applications include economical problems like resource
allocation, capital budgeting, cutting stock, some biological problems like pro-
teins and DNA comparison. Recent research has strongly focused on improving
the performance of ACO algorithms. In this paper, we have presented ACO al-
gorithm with additional reinforcement of the unused movements. The proposed
algorithm aims to exploit a search space, which have not been exploited yet and
to avoid premature convergence of the ants’ search. Comparing with the MAX-
MIN ACO algorithm, the achieved results of our algorithm prove the improved
performance over the MAX-MIN ACO algorithm. When usual genetic algorithm
is applied for solving constrained problems, sometime it produces unfeasible so-
lutions and it need techniques like local search to reach feasible solution. Com-
paring with standard genetic algorithm our modified ACO algorithm produces
only feasible solutions.

Acknowledgments

Stefka Fidanova was supported by a Marie Curie Fellowship of the Euro-
pean Community program “Improving Human Research Potential and the Socio-
Economic Knowledge Base” under contract number No HPMFCT-2000-00496.
This work was supported by the “Metaheuristics Network”, a Research Train-
ing Network funded by the Improving Human Potential program of the CEC,
grant HPRN-CT-1999-00106. The information provided in this paper is the sole
responsibility of the authors and does not reflect the Community’s opinion. The
Community is not responsible for any use that might be made of data appearing
in this publication.

References

1. Chu, P.C., Beasley, J.E.: A genetic algorithm for the multiple knapsack problem.
Journal of Heuristics 4 (1998) 63-86

2. Dorigo, M., Di Caro, G.: The ant colony optimization metaheuristic. In: Corne, D.,
Dorigo, M., Glover, F. (eds.): New Idea in Optimization, McGrow-Hill, (1999) 11-32

3. Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning approach
to the traveling salesman problem. IEEE Transactions on Evolutionary Computation
1 (1999) 53-66

4. Dorigo, M., Di Caro, G.,Gambardella, L.M.: Ant algorithms for distributed discrete
optimization. Artificial Life 5 (1999) 137-172

5. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: Optimization by a colony
of cooperating agents. IEEE Transaction on Systems, Man. and Cybernetics - Part
B, 26 (1996) 29-41

6. Fogel, B.: Evolutionary computation: Toward a new philosophy of machine intelli-
gence. IEEE Press, New York, (1994)

7. Gambardella, M.L., Taillard, E.D., Agazzi, G.: A multiple ant colony system for
vehicle routing problems with time windows. In: Corne, D., Dorigo, M., Glover, F.
(eds.): New Ideas in Optimization, McGraw-Hill, (1999) 63-76

8. Gambardella, L.M., Taillard, E.D., Dorigo, m: Ant colonies for the QAP. J. of Oper.
Res. Soc. 50 (1999) 167-176

9. Glover, F.: Tabu search. ORSA J. of Comput. 1 (1989)

10. Kirkpatrick, S., Gelatt, C.D., Vechi, M.P.: Optimization by simulated annealing.
Science 220 (1983) 671-680

11. Kochenberger, G., McCarl, G., Wymann, F.: A heuristic for general integer pro-
gramming. Decision Sciences 5 (1974) 36—44

12. Leguizamon, G., Michalevich, Z.: A new version of the ant system for subset prob-
lems. In: Proceedings of Int. Conf. on Evolutionary Computations, Washington (1999)

13. Stiitzle, T., Hoos H.H.: MAX-MIN ant system. In: Dorigo, M., Stiitzle, T., Di Caro,
G. (eds.): Future Generation Computer System Vol. 16 (2000) 889-914

14. Syswerda, G.: Simulated Crossover in Genetic Algorithms. In:Whitley, L.D. (eds.):
Proc. of the second workshop on Foundations of Genetic Algorithms, Sam Mateo
California, Morgan Kaufmann Publishers (1993) 239-255

15. Baluja, S., Caruna, R.: Removing Genetics from the Standard Genetic Algorithm.
In:Priedits, A., Russel, S. (eds.): The international Conference on Machine Learning,
Sam Mateo California, Morgan Kaufmann Publishers (1995) 38-46

